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We propose a recursive procedure to estimate the microcanonical density of states in multicanonical Monte
Carlo simulations which relies only on measurements of moments of the energy distribution, avoiding entirely
the need for energy histograms. This method yields directly a piecewise analytical approximation to the
microcanonical inverse temperature ��E� and allows improved control over the statistics and efficiency of the
simulations. We demonstrate its utility in connection with recently proposed schemes for improving the effi-
ciency of multicanonical sampling, either with adjustment of the asymptotic energy distribution or with the
replacement of single spin flip dynamics with collective updates.
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I. INTRODUCTION

Over the past decade, the use of Monte Carlo methods �1�
has broken the boundaries of statistical physics and has be-
come a widely used computational tool in fields as diverse as
chemistry, biology, and even sociology or finance.

Despite the enormous success of the well-known Me-
tropolis importance sampling algorithm, its narrow explora-
tion of the phase space and characteristic convergence diffi-
culties motivated a number of different approaches. First, the
techniques for harvesting useful information from the statis-
tical data obtained at a given temperature were improved in
order to extrapolate the results to a larger temperature range
and, therefore, reduce the number of required independent
simulations �2,3�. Secondly, cluster update algorithms were
proposed �4–6� in order to overcome critical slowing down.
Finally, the requirement of constant temperature was lifted,
allowing the system to explore a wider range of the energy
spectrum. In simulated tempering, the temperature becomes
a dynamical variable, which can change in the Markov pro-
cess �7�; parallel tempering uses several replicas of the sys-
tem running at different temperatures and introduces the
swapping of configurations between the various Markov
chains �8–10�. Multicanonical methods �11,12� replace
the Boltzmann distribution for the asymptotic probability of
sampling a given state of energy Ei, pi�exp�−�Ei�, by
pi�1/n�Ei�, the inverse of the microcanonical density of
states. This ensures that every energy value is sampled
with equal probability and results in a flat histogram in the
distribution of energies.

The first major obstacle to the multicanonical approach is
the obvious difficulty of accessing the true density of states
of a given system; several clever algorithms have been pro-
posed to this end �11,13,14�. Nevertheless, even in cases
where the true density of states is known a priori, recent

studies �15,16� have shown that very long equilibration times
can remain a serious concern. Furthermore, the number of
independent samples is strongly dependent on energy, mak-
ing error estimation rather tricky �17�. This has led some
authors �18� to question the reliability of the results obtained
by multicanonical methods in spin glass models at low tem-
peratures. To address these issues, the requirement of a per-
fectly flat histogram was also lifted �19�, sacrificing the equal
probability of sampling each energy in favor of minimizing
tunneling times, defined as the round trip time between two
specified energies �most commonly, between the ground state
and the maximum of the density of states�.

In this paper we propose a variation of the algorithm to
estimate the density of states. The main feature of our pro-
posal �that we name “CFP” since it is based on classical
fluctuation theory� is that it does not use histograms, instead
relying entirely on measurements of cumulants of the energy
distribution at each stage of the simulation to build a piece-
wise analytical approximation to the statistical entropy
S�E�=ln�n�E�� and inverse temperature ��E�=dS�E� /dE. We
find that the time required to explore the entire energy spec-
trum scales more favorably with system size than histogram
based methods. The method is easy to apply in systems with
continuous or discrete energy spectrum, can be quite natu-
rally adapted to running a simulation in a chosen energy
range, and accommodates without difficulty tunneling times,
optimization schemes and cluster update methods.

The paper is organized as follows. In Sec. II we describe
the new method and compare its performance with histogram
based methods. In Sec. III we show that the optimization
scheme proposed recently in Ref. �19� can be applied during
the process of estimating the density of states, still avoiding
histograms, and with significant efficiency gains. In Sec. IV,
we demonstrate the usefulness of the analytical approxima-
tion of ��E� in generalizing Wolff’s cluster algorithm �5� to
multicanonical simulations. This generalization maintains an
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acceptance probability still very close to unity, growing large
clusters at low temperatures and small ones at higher tem-
peratures. The optimization procedure reported in Ref. �19�
is also implemented for this cluster dynamics. Finally, the
main conclusions are summarized in Sec. V. The CFP
algorithm has already been applied with success to both dis-
crete �Ising models on regular lattices and small world net-
works, Ising spin glasses� �20� and continuous models
�XY and Heisenberg models, with both short- and long-range
interactions, namely, dipolar interactions� �21�, but this is a
systematic presentation.

II. THE CFP METHOD

A. Proposal

The usual way of ensuring a general asymptotic distribu-
tion pi�exp�−��Ei�� is to use a Markov chain algorithm in
which the transition probability to go from state i to state j
with respective energies Ei and Ej is

Wij = min�1,e−��� �1�

with ��=��Ej�−��Ei�. This choice leads to an asymptotic
energy distribution probability given by

H�E� � exp�S�E� − ��E�� , �2�

where the entropy is defined as the logarithm of the �un-
known� density of energy states, S�E�=ln�n�E��. In principle,
this relation allows a calculation of the entropy S�E� �up to
an irrelevant constant S0� from a numerical determination of
the distribution H�E� for any value of the energy E simply as

S�E� = S0 + ��E� + ln H�E� . �3�

However, this is not always efficient for any choice of the
function ��E�. Consider, for example, the widely used Me-
tropolis choice ��E�=�E �with �=1/T, the inverse tempera-
ture�. In many systems, the resulting distribution H�E� has
the shape of a bell curve, usually approximated by a Gauss-
ian distribution �Fig. 1�. Since it is very unlikely to generate

statistically significant configurations in the tails of the dis-
tribution for H�E�, the usefulness of the formula �3� is lim-
ited to values of E not too far from the mean value ��. “Not
too far” means explicitly that the above formula is limited to
those values of E such that �E−������� with ��2−4. In
this case, the mean value �� and the variance ��

2 of the
distribution H�E� satisfy

� dS

dE
�

��

= �, � d2S

dE2�
��

= −
1

��
2 . �4�

A clever choice for ��E� can greatly improve the range of
values of E for which the formula �3� is useful. For instance,
if we were to choose ��E�� ln�n�E�� then the resulting
distribution H�E� would be constant in E and all the energy
values would be sampled with the same frequency. However,
it is clear that this ideal multicanonical approach is impos-
sible since n�E� is precisely the function we want to
determine.

Some methods �13� were devised to estimate numerically
the density of states n�E�. For this paper it is relevant to
consider the conceptually important scheme developed by
Berg and collaborators �a review is given in Ref. �22��.
Berg’s scheme uses a succession of functions �i�E�, each one
of them giving information on n�E� for a range of energy
values. The initial choice �0�E�=0 �equivalent to a Metropo-
lis choice at infinite temperature, �=0� provides a histogram
H0�E� from which one derives an estimation of the entropy
S0�E� valid for those values of E visited in a statistically
significant way. After this stage, a new simulation is per-
formed with �1�E�=S0�E� in the region visited in the previ-
ous simulation and 0 elsewhere, from which we obtain an
entropy estimate S1�E� valid in another range of energies,
and so on. Berg proposes an explicit recursion scheme that
allows systematic corrections of �i�E� at all visited energies,
and ensures the convergence to the true entropy for any
energy, so ensuring a flat energy histogram.

This procedure has some limitations. To begin with, the
entropy can only be estimated inside the energy range visited
in the last simulation and a bad choice for the entropy out-
side this region can severely limit the exploration of lower
energies; secondly, rarely visited energies introduce a large
error in the estimated entropy �hence the need for recursion
introduced by Berg in order to minimize this error�. Further-
more, the fact that one counts visits in each energy implies
that, for continuous systems, the energy spectrum must be
discretized.

Our approach assumes that thermodynamic functions
such as the entropy can be treated as continuous functions of
energy, both for discrete and continuous spectra, for not too
small systems. More specifically, we make use of the
Gaussian approximation

S�E� � S���� + ��E − ��� −
1

2��
2 �E − ���2 �5�

to propose the sequence for the weight functions ��E�. The
procedure is such that at each recursion step the distribution
H�E� is flattened in a region centered around the mean and

FIG. 1. Schematic representation of the true derivative of the
entropy S�E� and two different choices for the derivative of ��E�,
with the corresponding energy probability distributions. In panel
�a�, the Metropolis approach, where ��E�=�E and, in panel �b�, the
ideal multicanonical approach with ��E�=S�E�.
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width proportional to the standard deviation of the energy
distribution at the previous step.

Our scheme works as follows. After running an initial
simulation at inverse temperature �0, with �0=�0E, we mea-
sure the mean value, �0, and the variance, �0

2, of the result-
ing energy distribution. We then modify the weight function
to �1�E� defined by

�1�E� = 	
�0E , E 	 �0,

b0 + �0�E − �0� −
�E − �0�2

2�0
2 , �1 � E � �0,

b1 + �1�E − �1� , E � �1



�6�

with �1=�0−��0. In order to ensure continuity of the
function and its derivative we determine b0=�0�0,
b1=�0�1− �2

2 , �1=�0+� /�0. In a simulation with transition
rates Wij =min�1,e−��1� we obtain H�E��const, for energies
such that �1�E��0, while for E��1, H�E� is a “half
Gaussian” with maximum at �1 and half-width �1. We now
compute �1

2 as the average of �E−�1�2 for E��1. We are
therefore able to add another branch to ��E�,

�2�E� =	
�0E , E 	 �0,

b0 + �0�E − �0� −
�E − �0�2

2�0
2 , �1 � E � �0,

b1 + �1�E − �1� −
�E − �1�2

2�1
2 , �2 � E � �1,

b2 + �2�E − �2� , E � �2



�7�

with �2=�1−��1, b2=�1�2− �2

2 , and �2=�1+� /�1. This
process can be repeated with similar recursion relations for
the coefficients until we reach the lowest temperature we
wish to study. On the iteration of order r the histogram is
nearly flat between �0 and �r and half Gaussian below �r
�Fig. 2�. Although the entropy could also be extrapolated to
higher values of the energy, using ��E�=�0E for E	�0, we

effectively restrict the simulation to energies below �0, apart
from a Gaussian tail above this energy.

The fact that ��r�E�=�r�E in the yet unexplored energy
regions, corresponding to Boltzmann sampling, means that
we can use all techniques developed for the Metropolis al-
gorithm in order to be confident on the results obtained in
this region, before moving on to lower energies. These re-
gions of canonical sampling can also be used to restrict the
simulation to a specific temperature range, for instance,
around a critical temperature, which can dramatically
increase the efficiency and precision of the simulation.

Surely, there are small systematic errors in the estimation
of the entropy, but they only influence the flatness of the
histogram near the critical temperature for a second order
phase transition. There, the method can also be refined by
keeping higher order terms in the expansion of the entropy
which can be obtained by measuring higher order moments
of the energy. We have successfully used an expansion of
S�E� up to fourth order terms.

In any case, there is no need for a perfectly flat histogram,
since for a given function ��E�, canonical averages can
always be obtained through the relation

�A
� =
�i

Aie
��Ei�−�Ei

�i
e��Ei�−�Ei

. �8�

The only requirement on the shape of the histogram is that it
is broad enough to include contributions to the desired values
of �.

B. Comparison with histogram based recursion

We now compare the performance of our proposal �CFP�
with that of the histogram based multicanonical recursion as
described in Ref. �22�. To this end, we have applied both
methods to the two-dimensional nearest-neighbor Ising
model, of Hamiltonian

H = − J�
�ij


sisj . �9�

Except for the method of estimating the density of states �or
rather, its logarithm, the entropy�, the results for the two
methods under comparison were obtained using exactly the
same code, specifically with the same number of steps per
run. We chose the number of Monte Carlo steps �MCS� in
each iteration �run� to increase linearly with the iteration
number, r, specifically as r
105 MCS. This is a rather
arbitrary choice which is necessary for comparison purposes.
In fact, our proposal allows us to set the number of steps
in the yet unexplored energy region as the criteria for moving
on to the next run, which, in turn, allows better statistical
control over the next estimate for the entropy. For a fair
comparison between the two algorithms we choose �0=0 for
CFP and impose ��E�=0 in the histogram based method for
E	�0. In this way the algorithms only explore the positive
temperature region of the spectra.

Figure 3 shows 7 histograms out of 35 iterations on a
64
64 Ising model, with r
105 MCS per run, which was

FIG. 2. In the current proposal, the weight function ��E� ap-
proximates the entropy between two energies �r and �0 and is
linear in energy outside this region, d� /dE=�r for E��r and
d� /dE=�0 for E	�0.
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enough to reach the ground state with our algorithm �we
used the value of the parameter �=2�. As shown in the lower
panel of that figure, several more runs are required using the
histogram based method. In this respect the difference in
performance of the two methods is quite remarkable. More-
over, histogram based methods do not provide an estimate
for the entropy outside the previously visited energy range.
As a result, for energies in the previously unvisited range,
H�E� decays as

H�E� � exp�S�E�� � exp�− �r�Er − E�� �10�

for E�Er, where Er is the lowest energy of the previous
run and �r=��Er�. Our method uses in the same range
��E�=�rE+const which leaves

H�E� � exp�S�E� − ��E�� � exp�−
1

2�r
2 �Er − E�2� .

�11�

Since �r
2 scales linearly with N, the added energy range in

each iteration scales differently in the two methods. In terms
of energy per particle, the added energy range per run, ��r
= ��r−�r−1� /N=��r, scales as ��r��rcr

1/2N−1/2 �cr is the
specific heat at temperature �r� in the CFP instead of ��r
� ��rN�−1 in histogram based methods. In Fig. 4 we plot the
visited energy per particle range after r iterations, for various
system sizes, as a function of r /N1/2 for the CFP method and
r /N for the histogram based method. The collapse of the
curves for the various system sizes shows that the number of
runs required to cover the same energy per particle range
scales with �N in the current proposal �left panel� and N in
histogram based methods �right panel�. Hence, although the
two methods perform similarly for small systems, the advan-
tage of the CFP method becomes obvious for large N and no
amount of fine tuning can disguise this advantage.

Other alternative schemes to Berg’s recursion have al-
ready been proposed such as Wang-Landau sampling �23�,

the histogram by overlapping windows �13�, or the transition
matrix method �24�. As will be seen shortly, the main advan-
tage of our method is that, unlike these previous methods, it
produces an analytic approximation to the microcanonical
inverse temperature ��E� in an increasing energy range, right
from the start of the simulation. That proves an asset in the
implementation of procedures designed to overcome the
slowing down with system size that affects multicanonical
simulations �15,19,25�.

III. OPTIMIZATION OF TUNNELING TIMES

In a recent publication �19�, Trebst, Huse, and Troyer
have shown that it is possible to significantly decrease the
tunneling times of a multicanonical simulation, by abandon-
ing the requirement of a flat histogram. Our procedure of
construction of the statistical entropy is well suited to imple-
ment their optimization method, right from the start of the
simulation, without having to construct an approximation to
n�E� for the entire spectrum.

The procedure proposed in Ref. �19� minimizes the aver-
age time required to span the gap between two fixed energies
in the spectrum E− and E+. To achieve this purpose, one must
distinguish each energy entry during the simulation accord-
ing to which of the two energies E− or E+ was visited last.
We can thus measure separately n−�E�, the number of visits
to energy E occurring when the simulation has visited E−
more recently than E+, and n+�E� for the other way around.
To minimize the tunneling times between the two energies
E− and E+ one must choose an asymptotic energy distribution
that satisfies

H�E� �
df�E�

dE
, �12�

where f�E�=n+�E� /H�E�. The implementation proposed in
Ref. �19� used the knowledge of the density of states n�E� in

FIG. 3. �Color online� A comparison of the evolution of the
multicanonical recursion in the present scheme �upper panel� and
the one described in Ref. �22� �lower panel�. The simulation was
done for an Ising square sample with L=64, and, for simplicity, we
only show histograms from one out of each five runs.

FIG. 4. �Color online� Full range of visited energies
�Er−E0� /N, as a function of the system size and number of itera-
tions r for current method �left panel� and for histogram based
recursion �right panel�; in our moment based method r scales
L=�N whereas, with histograms, it scales with N.
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the whole spectrum to measure the f�E�, following with a
recursion procedure that converges to the asymptotic
distribution which satisfies Eq. �12�. In our method of con-
struction of the density of states there are, at each step,
two energies which are the current boundaries of the known
density states, namely �0 �that remains fixed� and �r
�that changes with each run, r�. Therefore, by using E−=�r
and E+=�0 we can measure f�E�. In the first run, for
�1�E��0, we observe H1�E��exp�−�1�E��, with �1�E�
defined in Eq. �6�, rather than the optimal distribution
Hopt�E��exp�ln�df1 /dE��. To converge to the optimal distri-
bution �changing the weight alters f�E��, we use, in the next
run, the geometric mean �H1Hopt in the interval �1�E
��0 �19�: the weight factor becomes −�2�E�+
2�E�, where


2�E� =
1

2
ln�df1

dE
� for �1 � E � �0, �13�

with constant values of 
2��1� for E��1 and 
2��0� for
E	�0. Notice that the correction to the microcanonical tem-
perature ��E� is −d
2�E� /dE which is zero for E��1. This
choice ensures the convergence to the criterion of Eq. �12� in
the range where the entropy is already known and where
f�E� was measured, �1�E��0, and gives a flat histogram
in the region where the entropy was estimated by calculating
moments of the Gaussian tail, i.e., �2�E��1. This proce-
dure is iterated in the following runs with 
r�E� defined as


r�E� =
1

2
�
r−1 + ln�dfr−1

dE
��, �r−1 � E � �0 �14�

with constant values 
r��r−1� for E��r−1 and 
r��0� for
E	�0. To extract the numerical derivative of f�E�, avoiding
the difficulties of the fluctuations in histogram entries, we
use the natural scale afforded by ��, and calculate df /E as

� df

dE
�

��

=
�f�E��E − ���
�

��
2 . �15�

This quantity can be calculated using histograms or, using
the definition of f�E�, through the relation

� df

dE
�

��

=

�
i

+

�Ei − ���e��Ei�−�Ei

�
i

e��Ei�−�Ei
, �16�

where the superscript � denotes a summation restricted to
sampled states which contribute to n+�E�.

In Fig. 5 we plot the average tunneling time, divided by
�N ln N�2, for two different system sizes, as a function of the
run number of the multicanonical recursion divided by
�N; simulations with the same horizontal coordinate corre-
spond to the same energy per particle range. Curves �a� cor-
respond to the situation without optimization, and the aver-
age tunneling times vary faster than �N ln N�2; the two sizes
do not collapse to a single curve. In case �c�, with the opti-
mization carried out while the density of states is being de-
termined, the curves for the two system sizes track each
other. If the optimization correction is only performed after

full exploration of the energy spectrum, curve �b�, there is no
further gain in tunneling time, as the average tunneling times
of �b� merge with curve �c�. This observation clearly sup-
ports our suggestion that optimization can be implemented
while the density of states is being constructed. In this fash-
ion, it not only reduces tunneling times when n�E� is known,
but also speeds up the actual calculation of n�E�. As found in
Ref. �19�, the inset shows a strong signature of the optimiz-
ing procedure in the critical energy where the diffusivity is
low.

IV. CLUSTER DYNAMICS

An alternative way to improve the efficiency of multica-
nonical simulations consists in changing the specific dynam-
ics of the Markov chain, i.e., the algorithms used to propose
and accept configuration moves. In canonical ensemble
simulations, cluster update algorithms such as Wolff’s �5�,
Swendsen and Wang’s �6�, or Niedermeyer’s �4� have proved
very effective in overcoming critical slowing down of corre-
lations. Several proposals have been presented to generalize
cluster update approaches in multicanonical ensemble simu-
lations either using spin-bond representations of the partition
function �25–28� or cluster building algorithms based on al-
ternative ways of computing the microcanonical temperature
��E� �29,30�.

Wolff’s cluster algorithm �5� provides a clever way of
growing a cluster of parallel spins which can be flipped with
probability 1, and still maintain the required Boltzmann
asymptotic distribution. This remarkable possibility is inti-
mately related to the fact that ��E� is linear in energy
��E�=�E in a Metropolis simulation.

FIG. 5. �Color online� Tunneling time �scaled by �N ln N��2, for
system sizes N=48
48 and N=64
64, as an function of the re-
cursion run divided by L which is proportional to the energy per
particle range. �a� CFP without optimization; �b� for an application
of the optimization procedure only after an estimation of density of
states in the chosen range of temperatures; �c� our implementation
of the optimization. The inset shows the histograms obtained for the
sample with L=64 in several runs during the exploration of the
energy spectrum with optimization.
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In a multicanonical simulation, each step of the corre-
sponding Markov chain occurs with the same probability as
that of a canonical ensemble simulation, with an effective
temperature �i chosen as �i=��Ei�, Ei being the energy of
the current configuration; hence the designation “multica-
nonical.” With this in mind, the simplest way of implement-
ing cluster dynamics in a multicanonical simulation is to use

�i= �
d��E�

dE �E=Ei
to grow a cluster exactly as proposed in

Wolff’s algorithm. However, since the reverse path implies
a different value of �, � j =��Ej�, where Ej is the energy
of the next configuration in the chain, we must include an
acceptance probability to ensure detailed balance.

In Fig. 6 we illustrate a move involving the flipping of
four spins �labeled 1 to 4� on the left, and the reverse move
on the right. The site marked with the number 1 has been
chosen with uniform probability. If a bond connects spin 1 to
a neighboring spin parallel to 1 it is added to the cluster with
a probability pi and rejected with probability 1− pi. This step
is then repeated for the neighbors of the initial spin which
were added to the cluster, until the process stops and there
are no further bonds that can be aggregated to the cluster.
The probability of generating a cluster with na accepted
bonds, in which nr bonds to spins parallel to the initial one
were inspected and rejected, is given by

Gi→f = pi
na�1 − pi�nr. �17�

It is important to note that nr includes a number of rejected
bonds that now link spins inside the cluster �such as the bond
from spin 1 to spin 4 in Fig. 6�. We write nr=np+nf, where
np counts the number of such bonds and nf is the number of
bonds from spins in the cluster to parallel spins outside the
cluster. This distinction is important when considering the
reverse move.

The difference in energy between the final and initial con-
figuration is determined only by the frontier of the cluster; it
is given as �E=−2J�nd−nf� where nd is the number of bonds
to spins opposite to the spins in the cluster. Let us now con-
sider the reverse move, which requires us to select the same

cluster in the same order with the spins now reversed with
respect to the original state.

Referring once again to Fig. 6, one can see that the na
bonds that were accepted in the direct move �left� with prob-
ability pi must be accepted in the reverse move �right�, each
with probability pj; the nd bonds to opposite spins in the
direct move now connect to spins parallel to those in the
cluster and must be rejected with probability �1− pj�; the
bonds to spins that were rejected in the direct move �nf� are,
in the reverse process, bonds to opposite spins and are,
hence, rejected with probability 1; finally the np bonds that
were rejected but link spins inside the cluster must now also
be rejected. In other words, for the direct move

Gi→f = pi
na�1 − pi�nf�1 − pi�np �18�

while, for the reverse process,

Gf→i = pj
na�1 − pj�nd�1 − pj�np. �19�

Wolff’s algorithm corresponds to choosing
pi= pj =1−exp�−2J�� which implies that

Gf→i

Gi→f
= �1 − pi�nd−nf = e��E. �20�

The detailed balance condition for Boltzmann’s equilibrium
distribution is obtained for an acceptance probability of 1
for flipping the cluster. To ensure an asymptotic distribution
proportional to exp�−S�E��, the detailed balance requires an
acceptance probability given by

Ai→f = min�1,
Gf→i

Gi→f
e−�S�E�� . �21�

If we choose pi=1−e−2�iJ where �i=��Ei�, we find that
this acceptance probability remains close to 1 for most of the
energy range �see Fig. 7�, falling only at very low tempera-
tures. This behavior is in strong contrast with the one for
single spin flip dynamics, where the acceptance rate is only 1

FIG. 6. �Color online� This scheme shows, on the left, how, starting from a given spin �marked as 1�, the bonds to neighboring spins are
inspected and marked according to the algorithm. On the right are shown the resulting configuration and the way the initial state can be
reached from it.
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at the maximum of the density of states. If the inverse tem-
peratures of the initial and final states are close, �i�� j, the
acceptance rate becomes

Ai→f � min�1,�1 − pi�nf−nde−�S�E�� �22�

=min�1,e�i�Ee−�S�E�� , �23�

where we used �E=−2J�nd−nf� to obtain the second expres-
sion. For small energy differences, �S��i�E and the accep-
tance rate becomes close to unity.

In the case of the 2D ferromagnetic Ising model, the av-
erage excitation energy �E is of O��N� for energies below
�c ��c=��c

where �c is the inverse critical temperature�, of
O�1� for energies above �c, with a crossover between these
regimes in the neighborhood of �c �Fig. 8�. This behavior
reflects a huge difference with respect to single spin flip dy-
namics �SSF�, where �E is always of O�1�. A similar behav-
ior exists for the number of spins nv that are inspected in
each call of the Markov chain: nv�O�1� for E	�c and
nv�O�N� for E��c. This two regime behavior introduces
an additional complexity in this method. In particular, the
tunneling time measured in Markov chains calls no longer
scales as the computational time with system size, since Mar-
kov chain calls can take a computational time of order O�N�.
We therefore redefine the time scale so that a Markov chain
call in a state of energy E corresponds to a time span of
nv�E�, the average number of inspected spins in the cluster
buildup process.

We now consider the system’s coarse grained random
walk in energy space. When the energy is close to E, the
mean square energy change in M Markov chain calls is

��E2
M = ��E2
 
 M �24�

and this occurs in a time �M =M 
nv�E�. With time measured
in this way, the diffusivity of this random walk in energy
space is

D�E� �
��E2

nv�E�

. �25�

On the other hand, the probability that the system is at
energy E is proportional to

Hv�E� = H�E� 
 nv�E� , �26�

since each visit to energy E lasts a time nv�E�. The
probability current is given, quite generally, by

j = ��E�V�E� −
d

dE
�D�E���E�� , �27�

where, in equilibrium, j=0, and

��E� = �0�E� �
Hv�E�

� dEHv�E�
. �28�

V�E� is a bias field, in general nonzero, which, together with
D�E�, determines the equilibrium distribution.

It can be shown �19,31� that the tunneling times of a
random walk with a given diffusivity D�E� can be minimized
with an optimal choice of bias field V�E�. The corresponding
equilibrium distribution is given by

�0�E� =
1

�D�E�
. �29�

Using Eqs. �25� and �26�, this condition becomes

FIG. 8. �Color online� Two regime behavior of the Wolff’s clus-
ter algorithm for the 2D ferromagnetic Ising model, with a micro-
canonical temperature ��E�. The left panel represents the equal en-
ergy average of the fraction of visited spins nv during the cluster
growing. In the ferromagnetic phase the number of visited spins is
of the order of O�N� and in the paramagnetic phase is of O�1�. The
right panel represents the equal energy average of the excitations
�E. In the paramagnetic phase ���E2
 becomes independent of the
system size, while in the ferromagnetic phase it scales as �N.

FIG. 7. �Color online� Acceptance ratio of the Wolff ’s cluster
algorithm, with a microcanonical ��E�, for the 2D ferromagnetic
Ising model. In the paramagnetic phase the acceptance ratio grows
to 1 with the increase of system size; in the ferromagnetic phase the
acceptance ratio tends to a finite value, smaller than 1, as N grows.
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H�E� �
1

���E2
nv�E�
. �30�

This variation of ln�H�E��, relative to a flat histogram, is of
order O(ln�N�), and, therefore, histograms remain broad,
covering the entire spectrum, but are no longer flat as shown
in panel �a� of Fig. 9. On panel �d� it is shown that the
tunneling time for this simulation scale has N2 as expected
from a simple diffusion.

The optimization procedure presented in Ref. �19�, in the
context of N-fold way dynamics, is closely related to this one
�but not identical� and leads to a choice

H�E� �
1

nv�E�
df

dE
, �31�

where f�E� was defined above. We find only a marginal im-
provement in tunneling times with respect to the case of a
histogram defined by Eq. �30�. These two procedures will be
compared in another publication �31�.

V. CONCLUSION

We have proposed a method to build the density of states
in a multicanonical simulation. The method is based on the
calculation of moments of the energy distribution. It avoids
the use of histograms and can just as easily be implemented
for continuous systems. It leads to a piecewise analytic ap-
proximation to the microcanonical inverse temperature ��E�.
This fact could also be of advantage in multicanonical
molecular dynamics simulations �32� where this parametri-
zation could lead to a better way of scaling the forces for
multicanonical sampling.

In any stage of the simulation there are two well defined
energies, E− and E+, that limit the range in which ��E�

is known. Therefore the method can be applied without
difficulty to a predefined temperature range such as a
neighborhood of a critical temperature.

We have also demonstrated the usefulness of this method
in the implementation of various optimization schemes that
render the simulation more efficient. In Fig. 10 we sum up
the results we obtained for the scaling of tunneling times
with the system size. In general the scaling of the average
tunneling time is ��N2+z. In a straightforward multicanoni-
cal simulation with a SSF dynamics, z=0.39. Using the
optimization procedure of Ref. �19� we confirm that
���N ln N�2. For a generalization of Wolff’s cluster method
for the multicanonical ensemble we found a biased random
walk in energy with z=0.82. We proposed a method for re-
ducing tunneling time of cluster update simulations which
adjusts the bias of the random walk in energy space. In this
case, �clusterOB� and also for optimized ensemble simulation
with cluster algorithm, proposed in Ref. �19� �clusteropt�, the
results are compatible with z=0. In the �clusterOB� method,
however, one avoids the necessity to calculate of the deriva-
tive of f�E�, required for the �clusteropt� method of Ref. �19�.
In terms of actual computer time, we also found that the
amplitudes of the scaling laws are considerably smaller for
the optimized cluster method, than for SSF dynamics.
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FIG. 9. �Color online� Results of the CFP recursion to construct
a histogram given by Eq. �30�. �a� Histogram of the simulation for
several steps of the CFP recursion, �b� acceptance ratio, �c� �H�E�

�nv�E���E2
�, and �d� tunneling time �scaled by N2� versus the
run of the recursion �scaled by L�.

FIG. 10. �Color online� Scaling of tunneling time with system
size in various broad histogram methods: �SSF� straightforward
multicanonical simulation with single spin flip dynamics, �SSFopt�
optimized single spin flip dynamics, �clusterOB� optimized bias for
the measured D�E�, �clusteropt� optimized ensemble with cluster
dynamics, �clusterFH� flat histogram with cluster dynamics.
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